

Year 12 Methods Units 3,4 Test 1 2020

Section 1 Calculator Free

Differentiation, Applications of Differentiation, Integration, Applications of Integration

STUDENT'S NAME

DATE: Friday 6th March

TIME: 20 minutes

MARKS: 18

INSTRUCTIONS:

Standard Items: Pens, pencils, drawing templates, eraser

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (5 marks)

Determine each of the following

(a) $\int \frac{3x-5}{x^4} dx$

[2]

(b) $\int 6(2x+3)^5 dx$

[3]

2. (4 marks)

List ALL graphs in which

- f'(3) = 0(a)
- f'(4) > 0(b)

(c)
$$f''(3) < 0$$

(d)
$$f''(4) > 0$$

3. (4 marks)

Determine the area bound by the *x*-axis and $y = 6 + 5x + x^2$.

4. (5 marks)

Determine the equation of the curve with a minimum turning point of (3, -5) and a second derivative of 12x - 18.

Year 12 Methods Units 3,4 Test 1 2020

Section 2 Calculator Assumed Differentiation, Applications of Differentiation, Integration, Applications of Integration

STUDENT'S NAME

DATE: Friday 6th March

TIME: 30 minutes

MARKS: 33

INSTRUCTIONS:

Standard Items:Pens, pencils, drawing templates, eraserSpecial Items:Three calculators, notes on one side of a single A4 page (these notes to be handed in with this assessment)

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

5. (4 marks)

A general ellipsoid has semi-axes lengths *a*, *b* and *c* as shown in the diagram below and has a volume given by $V = \frac{4\pi abc}{2}$.

Consider the ellipsoid where the relationship between the semi-axes lengths is that b is three times a, and that the sum of a and c is 42 cm.

- (a) Show that the volume of this ellipsoid is given by $168\pi a^2 4\pi a^3$. [1]
- (b) Use the increments formula to estimate the change in volume of the ellipsoid when *a* increases from 30 cm to 30.5 cm. [3]

6. (6 marks)

A train is travelling at 30 metres per second when the breaks are applied. The velocity of the train is given by the equation $v = 30 - 0.3t^2$ where t represents the time in seconds after the breaks are applied.

The area under the velocity-time graph gives the total distance travelled for a particular time period.

(a) Complete the tables below and estimate the distance travelled by the train during the first 6 seconds by calculating the mean of the rectangles (overestimate and underestimate). The rectangles for the 4-6 seconds interval are shown in the table below.

Time (<i>t</i>)	0	2	4	6
Velocity (v)		28.8		19.2

Rectangle	0-2	2-4	4-6	Total
Underestimate			38.4	
Overestimate			50.4	

Estimated distance travelled:		[5]
-------------------------------	--	-----

(b) The exact distance travelled is during the first 6 seconds is 158.4m.How could you determine a better estimate of the distance travelled by the train during the first six seconds than the one determine in (a)?

7. (10 marks)

The displacement of a particle moving along a straight line at time t seconds is given by $s = t^3 - 4t^2 + 4t - 10$ metres.

(a)	Determine the change in displacement in the first 2 seconds.	[2]

(b) Determine the velocity of the particle when t = 5 seconds. [2]

(c) Determine when the particle is instantaneously at rest. [2]

(d)	Determine the initial acceleration of the particle.	[2]
-----	---	-----

(e) Determine the distance travelled in the first 2 seconds. [2]

8. (6 marks)

A company's revenue each week is $(800 + 1000n - 20n^2)$ where *n* is the number of employees. The company spend \$760 per employee for wages and materials.

(a) Write an expression for the company's weekly profit, P dollars. [1]

(b) Determine the number of employees required for maximum profit and hence calculate the maximum weekly profit. [3]

(c) Determine the marginal revenue when n = 4 and explain what this tells us about revenue. [2]

9. (7 marks)

A man at point A on the bank of a river 2km wide wishes to reach a point B, 4km down from point A on the opposite bank. He can travel in a boat at 6km/hr and ride a bicycle at 10km/hr.

(a) Given that Time = $\frac{\text{Distance}}{\text{Speed}}$, show that the equation for the time taken for the man to reach the point across the river is $t = \frac{\sqrt{4 + x^2}}{6} + \frac{4 - x}{10}$ where *x* is the distance landed downstream by the man on the opposite bank. [3]

(b) Determine how far downstream he must land on the opposite bank in order to reach point B in a minimum time and state that minimum time. [4]